College

A [tex]\( \text{BaSO}_4 \)[/tex] slurry is ingested before the gastrointestinal tract is X-rayed because it is opaque to X-rays and defines the contours of the tract. The [tex]\( \text{Ba}^{2+} \)[/tex] ion is toxic, but the compound is nearly insoluble. If [tex]\( \Delta G^{ 0 } \)[/tex] at [tex]\( 37^{\circ} C \)[/tex] (body temperature) is [tex]\( 59.1 \, \text{kJ/mol} \)[/tex] for the process:

[tex]\[ \text{BaSO}_4(s) \rightleftharpoons \text{Ba}^{2+}(aq) + \text{SO}_4^{2-}(aq) \][/tex]

What is the [tex]\(\left[ \text{Ba}^{2+} \right]\)[/tex] in the intestinal tract? (Assume that the only source of [tex]\(\text{SO}_4^{2-}\)[/tex] is the ingested slurry.)

[tex]\(\square \times 10 \, \square \, M\)[/tex]

(Enter your answer in scientific notation.)

Answer :

To find the concentration of [tex]\([Ba^{2+}]\)[/tex] in the intestinal tract, we need to calculate the solubility product constant ([tex]\(K_{sp}\)[/tex]) of the reaction where barium sulfate ([tex]\(BaSO_4\)[/tex]) dissolves slightly in water:

[tex]\[ BaSO_4(s) \rightleftharpoons Ba^{2+}(aq) + SO_4^{2-}(aq) \][/tex]

### Step-by-Step Solution

1. Given Information:

- [tex]\(\Delta G^{0} = 59.1 \, \text{kJ/mol}\)[/tex]
- Body temperature = [tex]\(37^{\circ} \text{Celsius}\)[/tex]

2. Convert [tex]\(\Delta G^{0}\)[/tex] to J/mol:

Since [tex]\(\Delta G^{0}\)[/tex] is given in kJ/mol, convert it to J/mol:

[tex]\[ \Delta G^{0} = 59.1 \, \text{kJ/mol} \times 1000 \, \text{J/kJ} = 59100 \, \text{J/mol} \][/tex]

3. Convert Temperature to Kelvin:

Convert the body temperature from Celsius to Kelvin:

[tex]\[ T = 37 + 273.15 = 310.15 \, \text{K} \][/tex]

4. Calculate the Equilibrium Constant ([tex]\(K_{eq}\)[/tex]):

The relationship between [tex]\(\Delta G^{0}\)[/tex] and the equilibrium constant is given by:

[tex]\[ \Delta G^{0} = -RT\ln K_{eq} \][/tex]

Where [tex]\(R = 8.314 \, \text{J/(mol*K)}\)[/tex] is the universal gas constant.

Rearranging for [tex]\(K_{eq}\)[/tex],

[tex]\[ K_{eq} = \exp\left(-\frac{\Delta G^{0}}{RT}\right) \][/tex]

Substitute the values:

[tex]\[ K_{eq} = \exp\left(-\frac{59100}{8.314 \times 310.15}\right) \][/tex]

[tex]\[ K_{eq} = 1.112 \times 10^{-10} \][/tex]

5. Determine [tex]\([Ba^{2+}]\)[/tex]:

- For the dissolution of [tex]\(BaSO_4\)[/tex], the equilibrium relationship is:

[tex]\[ K_{sp} = [Ba^{2+}][SO_4^{2-}] \][/tex]

Since at equilibrium both [tex]\([Ba^{2+}]\)[/tex] and [tex]\([SO_4^{2-}]\)[/tex] are equal (due to the 1:1 stoichiometry of the dissolution),

[tex]\[ K_{sp} = [Ba^{2+}]^2 \][/tex]

Solving for [tex]\([Ba^{2+}]\)[/tex],

[tex]\[ [Ba^{2+}] = \sqrt{K_{sp}} \][/tex]

Substitute the value of [tex]\(K_{eq}\)[/tex] for [tex]\(K_{sp}\)[/tex]:

[tex]\[ [Ba^{2+}] = \sqrt{1.112 \times 10^{-10}} \][/tex]

[tex]\[ [Ba^{2+}] = 1.05 \times 10^{-5} \, \text{M} \][/tex]

Therefore, the concentration of [tex]\([Ba^{2+}]\)[/tex] in the intestinal tract is [tex]\(1.05 \times 10^{-5} \, \text{M}\)[/tex].