Answer :
Sure! Let's solve this problem step-by-step using stoichiometry.
1. Find the moles of [tex]\( \text{Pb(NO}_3\text{)}_2 \)[/tex]:
You are given a 0.210 M solution of [tex]\( \text{Pb(NO}_3\text{)}_2 \)[/tex] and a volume of 50.0 mL. First, convert the volume from mL to L (which is 50.0 mL = 0.0500 L).
[tex]\[
\text{Moles of } \text{Pb(NO}_3\text{)}_2 = \text{Concentration (M)} \times \text{Volume (L)} = 0.210 \, \text{mol/L} \times 0.0500 \, \text{L} = 0.0105 \, \text{mol}
\][/tex]
2. Use the reaction stoichiometry to find the moles of KCl needed:
According to the balanced chemical equation:
[tex]\[
2 \, \text{KCl (aq)} + \text{Pb(NO}_3\text{)}_2 \text{(aq)} \rightarrow \text{PbCl}_2 \text{(s)} + 2 \, \text{KNO}_3 \text{(aq)}
\][/tex]
This reaction indicates that 2 moles of KCl are needed for every 1 mole of [tex]\( \text{Pb(NO}_3\text{)}_2 \)[/tex]. So, for 0.0105 moles of [tex]\( \text{Pb(NO}_3\text{)}_2 \)[/tex], you need:
[tex]\[
\text{Moles of KCl} = 2 \times 0.0105 \, \text{mol} = 0.0210 \, \text{mol}
\][/tex]
3. Calculate the volume of KCl solution needed:
You have a 0.244 M KCl solution. To find the volume needed to get 0.0210 moles of KCl, use the formula:
[tex]\[
\text{Volume (L)} = \frac{\text{Moles of KCl}}{\text{Concentration (M)}} = \frac{0.0210 \, \text{mol}}{0.244 \, \text{mol/L}} \approx 0.0861 \, \text{L}
\][/tex]
Convert this volume from liters to milliliters:
[tex]\[
0.0861 \, \text{L} \times 1000 = 86.1 \, \text{mL}
\][/tex]
Therefore, the volume of the 0.244 M KCl solution required to react exactly with 50.0 mL of the 0.210 M [tex]\( \text{Pb(NO}_3\text{)}_2 \)[/tex] solution is 86.1 mL.
The correct answer is:
C) 86.1 mL
1. Find the moles of [tex]\( \text{Pb(NO}_3\text{)}_2 \)[/tex]:
You are given a 0.210 M solution of [tex]\( \text{Pb(NO}_3\text{)}_2 \)[/tex] and a volume of 50.0 mL. First, convert the volume from mL to L (which is 50.0 mL = 0.0500 L).
[tex]\[
\text{Moles of } \text{Pb(NO}_3\text{)}_2 = \text{Concentration (M)} \times \text{Volume (L)} = 0.210 \, \text{mol/L} \times 0.0500 \, \text{L} = 0.0105 \, \text{mol}
\][/tex]
2. Use the reaction stoichiometry to find the moles of KCl needed:
According to the balanced chemical equation:
[tex]\[
2 \, \text{KCl (aq)} + \text{Pb(NO}_3\text{)}_2 \text{(aq)} \rightarrow \text{PbCl}_2 \text{(s)} + 2 \, \text{KNO}_3 \text{(aq)}
\][/tex]
This reaction indicates that 2 moles of KCl are needed for every 1 mole of [tex]\( \text{Pb(NO}_3\text{)}_2 \)[/tex]. So, for 0.0105 moles of [tex]\( \text{Pb(NO}_3\text{)}_2 \)[/tex], you need:
[tex]\[
\text{Moles of KCl} = 2 \times 0.0105 \, \text{mol} = 0.0210 \, \text{mol}
\][/tex]
3. Calculate the volume of KCl solution needed:
You have a 0.244 M KCl solution. To find the volume needed to get 0.0210 moles of KCl, use the formula:
[tex]\[
\text{Volume (L)} = \frac{\text{Moles of KCl}}{\text{Concentration (M)}} = \frac{0.0210 \, \text{mol}}{0.244 \, \text{mol/L}} \approx 0.0861 \, \text{L}
\][/tex]
Convert this volume from liters to milliliters:
[tex]\[
0.0861 \, \text{L} \times 1000 = 86.1 \, \text{mL}
\][/tex]
Therefore, the volume of the 0.244 M KCl solution required to react exactly with 50.0 mL of the 0.210 M [tex]\( \text{Pb(NO}_3\text{)}_2 \)[/tex] solution is 86.1 mL.
The correct answer is:
C) 86.1 mL