College

Suppose that the weight, [tex]X[/tex], in pounds, of a 40-year-old man is a normal random variable with a mean of 147 and a standard deviation of 16.

Determine [tex]P(120 \leq X \leq 153)[/tex]. Round your answer to four decimal places.

Answer :

We are given that the weight [tex]$X$[/tex] of a 40‐year-old man is normally distributed with mean [tex]$\mu = 147$[/tex] pounds and standard deviation [tex]$\sigma = 16$[/tex] pounds. That is,

[tex]$$
X \sim N(147,16^2).
$$[/tex]

We wish to find the probability

[tex]$$
P(120 \le X \le 153).
$$[/tex]

A common strategy is to standardize the variable [tex]$X$[/tex] to a standard normal variable [tex]$Z$[/tex], defined by

[tex]$$
Z = \frac{X-\mu}{\sigma}.
$$[/tex]

### Step 1. Standardize the Endpoints

For the lower endpoint [tex]$X = 120$[/tex]:

[tex]$$
z_1 = \frac{120-147}{16} = \frac{-27}{16} \approx -1.6875.
$$[/tex]

For the upper endpoint [tex]$X = 153$[/tex]:

[tex]$$
z_2 = \frac{153-147}{16} = \frac{6}{16} = 0.375.
$$[/tex]

### Step 2. Express the Probability in Terms of [tex]$Z$[/tex]

The probability that [tex]$X$[/tex] is between 120 and 153 is the same as the probability that [tex]$Z$[/tex] is between [tex]$z_1$[/tex] and [tex]$z_2$[/tex]. Hence,

[tex]$$
P(120 \le X \le 153) = P(z_1 \le Z \le z_2) = \Phi(z_2) - \Phi(z_1),
$$[/tex]

where [tex]$\Phi(z)$[/tex] denotes the cumulative distribution function (CDF) of the standard normal distribution.

### Step 3. Use the Standard Normal Distribution Values

From the standard normal distribution table or an appropriate calculator, we find:

- [tex]$\Phi(z_1) \approx 0.0458$[/tex], when [tex]$z_1\approx -1.6875$[/tex].
- [tex]$\Phi(z_2) \approx 0.6462$[/tex], when [tex]$z_2=0.375$[/tex].

### Step 4. Compute the Probability Difference

Subtracting the two values gives

[tex]$$
P(120 \le X \le 153) \approx 0.6462 - 0.0458 = 0.6004.
$$[/tex]

### Final Answer

Thus, the probability that a 40-year-old man weighs between 120 and 153 pounds is approximately

[tex]$$
\boxed{0.6004}.
$$[/tex]