College

The net force applied to a 3 kg mass is 12 N at a 55-degree angle relative to the positive x-axis. Find the x and y components of the object's acceleration.

**6. x-component**
A. [tex]\quad 2.294 \, \text{m/s}^2[/tex]
B. [tex]\quad 2.668 \, \text{m/s}^2[/tex]
C. [tex]\quad 1.742 \, \text{m/s}^2[/tex]
D. [tex]\quad 2.041 \, \text{m/s}^2[/tex]
E. [tex]\quad 2.083 \, \text{m/s}^2[/tex]
F. [tex]\quad 2.354 \, \text{m/s}^2[/tex]

**7. y-component**
A. [tex]\quad 2.865 \, \text{m/s}^2[/tex]
B. [tex]\quad 3.653 \, \text{m/s}^2[/tex]
C. [tex]\quad 3.814 \, \text{m/s}^2[/tex]
D. [tex]\quad 3.277 \, \text{m/s}^2[/tex]
E. [tex]\quad 3.652 \, \text{m/s}^2[/tex]
F. [tex]\quad 2.931 \, \text{m/s}^2[/tex]

Answer :

To solve the problem, let's break it down step-by-step.

We need to find the components of the acceleration [tex]\( a_x \)[/tex] and [tex]\( a_y \)[/tex] for a mass of 3 kg when a force of 12 N is applied at an angle of 55 degrees relative to the positive x-axis.

### Step 1: Understand the given data
- Mass (m) = 3 kg
- Force (F) = 12 N
- Angle ([tex]\(\theta\)[/tex]) = 55 degrees

### Step 2: Break the force into its x and y components
To find the components of the force in the x and y directions, we use the following formulas:
- [tex]\( F_x = F \cdot \cos(\theta) \)[/tex]
- [tex]\( F_y = F \cdot \sin(\theta) \)[/tex]

### Step 3: Find acceleration components using Newton's Second Law
Newton's Second Law is [tex]\( F = m \cdot a \)[/tex], where [tex]\( a \)[/tex] is the acceleration. We can rearrange this to find acceleration as:
- [tex]\( a_x = \frac{F_x}{m} \)[/tex]
- [tex]\( a_y = \frac{F_y}{m} \)[/tex]

### Step 4: Calculate the x-component of the acceleration
First, we find the cosine of the angle to determine [tex]\( a_x \)[/tex]:
- [tex]\( \cos(55^\circ) = 0.573576436351046 \)[/tex]

Next, calculate the force in the x direction:
- [tex]\( F_x = 12 \, \text{N} \times 0.573576436351046\)[/tex]
- [tex]\( F_x \approx 6.882917236212552 \, \text{N} \)[/tex]

Now, find the acceleration in the x direction:
- [tex]\( a_x = \frac{6.882917236212552 \, \text{N}}{3 \, \text{kg}} \)[/tex]
- [tex]\( a_x \approx 2.294 \, \text{m/s}^2 \)[/tex]

Thus, the x-component of the object's acceleration is approximately [tex]\( 2.294 \, \text{m/s}^2 \)[/tex].

### Step 5: Calculate the y-component of the acceleration
Next, we find the sine of the angle to determine [tex]\( a_y \)[/tex]:
- [tex]\( \sin(55^\circ) = 0.819152044288992 \)[/tex]

Next, calculate the force in the y direction:
- [tex]\( F_y = 12 \, \text{N} \times 0.819152044288992 \)[/tex]
- [tex]\( F_y \approx 9.829824531467904 \, \text{N} \)[/tex]

Now, find the acceleration in the y direction:
- [tex]\( a_y = \frac{9.829824531467904 \, \text{N}}{3 \, \text{kg}} \)[/tex]
- [tex]\( a_y \approx 3.277 \, \text{m/s}^2 \)[/tex]

Therefore, the y-component of the object's acceleration is approximately [tex]\( 3.277 \, \text{m/s}^2 \)[/tex].

### Summary of Components:
- The x-component of the acceleration is [tex]\( 2.294 \, \text{m/s}^2 \)[/tex] (Choice A).
- The y-component of the acceleration is [tex]\( 3.277 \, \text{m/s}^2 \)[/tex] (Choice D).

So, the correct answers are:
- x-component: [tex]\( \boxed{2.294 \, \text{m/s}^2} \)[/tex]
- y-component: [tex]\( \boxed{3.277 \, \text{m/s}^2} \)[/tex]