Answer :
To calculate a 99.9% confidence interval for the population mean [tex]\mu[/tex], we need to follow a series of steps involving statistical concepts. Here’s how we can do it:
Find the Sample Mean ([tex]\bar{x}[/tex]):
First, we calculate the average of the given sample data.[tex]\bar{x} = \frac{\sum{x_i}}{n}[/tex]
where [tex]x_i[/tex] is each value in the sample and [tex]n[/tex] is the number of sample values.Plugging in the numbers:
[tex]\bar{x} = \frac{54.8 + 50.7 + 55.1 + \ldots + 25.6}{49}[/tex]After calculating the sum and division:
[tex]\bar{x} \approx 49.89[/tex]Calculate the Sample Standard Deviation ([tex]s[/tex]):
The sample standard deviation is calculated using:[tex]s = \sqrt{\frac{\sum{(x_i - \bar{x})^2}}{n-1}}[/tex]
After computing the individual squared differences and the sum, you can find [tex]s \approx 9.26[/tex].
Determine the Critical Value ([tex]Z[/tex]):
For a 99.9% confidence interval with a normal distribution, we use a Z-distribution. The critical value [tex]Z[/tex] for 99.9% confidence level is approximately 3.291. This value is typically found in Z-tables.Calculate the Margin of Error (ME):
The margin of error can be found using:[tex]ME = Z \times \frac{s}{\sqrt{n}}[/tex]
[tex]ME \approx 3.291 \times \frac{9.26}{\sqrt{49}}[/tex]
[tex]ME \approx 3.291 \times 1.32 \approx 4.35[/tex]
Calculate the Confidence Interval:
Finally, use [tex]ME[/tex] to find the confidence interval for [tex]\mu[/tex]:[tex](\bar{x} - ME) < \mu < (\bar{x} + ME)[/tex]
[tex]49.89 - 4.35 < \mu < 49.89 + 4.35[/tex]
[tex]45.54 < \mu < 54.24[/tex]
Thus, the 99.9% confidence interval for the population mean [tex]\mu[/tex] is approximately [tex]45.54 < \mu < 54.24[/tex]. This interval gives us a range that we can be 99.9% confident contains the true population mean.