College

(a) Determine if the upper bound theorem identifies 3 as an upper bound for the real zeros of [tex]f(x)[/tex].

(b) Determine if the lower bound theorem identifies -5 as a lower bound for the real zeros of [tex]f(x)[/tex].

Given:
\[ f(x) = 2x^5 + 17x^4 + 6x^2 + 4x + 39 \]

Part 1 of 2:

(a) The upper bound theorem identifies [tex]\square[/tex] (Choose one) 3 as an upper bound for the real zeros of [tex]f(x)[/tex].

Answer :

We begin with the polynomial

[tex]$$
f(x)=2x^5+17x^4+0x^3+6x^2+4x+39.
$$[/tex]

To check whether [tex]$3$[/tex] is an upper bound for the real zeros of [tex]$f(x)$[/tex], we use synthetic division with the candidate [tex]$3$[/tex]. List the coefficients in descending order:

[tex]$$
2,\ 17,\ 0,\ 6,\ 4,\ 39.
$$[/tex]

The synthetic division process is as follows:

1. Write down the candidate [tex]$3$[/tex] to the left and the coefficients in a row.
2. Bring the first coefficient, [tex]$2$[/tex], straight down.
3. Multiply the number just brought down by [tex]$3$[/tex]:
[tex]$$
2\times 3=6.
$$[/tex]
Add this to the next coefficient:
[tex]$$
17+6=23.
$$[/tex]
4. Multiply [tex]$23$[/tex] by [tex]$3$[/tex]:
[tex]$$
23\times 3=69.
$$[/tex]
Add to the next coefficient:
[tex]$$
0+69=69.
$$[/tex]
5. Multiply [tex]$69$[/tex] by [tex]$3$[/tex]:
[tex]$$
69\times 3=207.
$$[/tex]
Add to the next coefficient:
[tex]$$
6+207=213.
$$[/tex]
6. Multiply [tex]$213$[/tex] by [tex]$3$[/tex]:
[tex]$$
213\times 3=639.
$$[/tex]
Add to the next coefficient:
[tex]$$
4+639=643.
$$[/tex]
7. Multiply [tex]$643$[/tex] by [tex]$3$[/tex]:
[tex]$$
643\times 3=1929.
$$[/tex]
Add to the last coefficient:
[tex]$$
39+1929=1968.
$$[/tex]

The resulting synthetic division row is:

[tex]$$
[2,\ 23,\ 69,\ 213,\ 643,\ 1968].
$$[/tex]

Since every number in this row is non-negative, by the upper bound theorem, [tex]$3$[/tex] is an upper bound for the real zeros of [tex]$f(x)$[/tex].

Thus, the answer to part (a) is that [tex]$3$[/tex] is an upper bound for the real zeros of [tex]$f(x)$[/tex].