College

Suppose [tex]X \sim N(5.5,2)[/tex], and [tex]x=7.5[/tex]. Find and interpret the [tex]z[/tex]-score of the standardized normal random variable.

Select the correct answer below:

A. This means that [tex]x=7.5[/tex] is one standard deviation [tex](1 \sigma)[/tex] above or to the right of the mean, [tex]\mu=5.5[/tex].

B. This means that [tex]x=7.5[/tex] is one standard deviation [tex](1 \sigma)[/tex] below or to the left of the mean, [tex]\mu=5.5[/tex].

C. This means that [tex]x=7.5[/tex] is two standard deviations [tex](2 \sigma)[/tex] above or to the right of the mean, [tex]\mu=5.5[/tex].

D. This means that [tex]x=7.5[/tex] is two standard deviations [tex](2 \sigma)[/tex] below or to the left of the mean, [tex]\mu=5.5[/tex].

Answer :

To find the [tex]\( z \)[/tex]-score of the given value [tex]\( x = 7.5 \)[/tex] for a normally distributed variable [tex]\( X \sim N(5.5, 2) \)[/tex], follow these steps:

1. Identify the Mean ([tex]\(\mu\)[/tex]) and Standard Deviation ([tex]\(\sigma\)[/tex]):

- The mean ([tex]\(\mu\)[/tex]) of the normal distribution is 5.5.
- The standard deviation ([tex]\(\sigma\)[/tex]) is 2.

2. Use the [tex]\( z \)[/tex]-score Formula:

The formula to calculate the [tex]\( z \)[/tex]-score is:
[tex]\[
z = \frac{x - \mu}{\sigma}
\][/tex]
where:
- [tex]\( x \)[/tex] is the value you are analyzing (in this case, 7.5).
- [tex]\(\mu\)[/tex] is the mean of the distribution.
- [tex]\(\sigma\)[/tex] is the standard deviation.

3. Plug in the Values:

Substitute the known values into the formula:
[tex]\[
z = \frac{7.5 - 5.5}{2}
\][/tex]

4. Calculate:

Simplify the expression:
[tex]\[
z = \frac{2}{2} = 1
\][/tex]

5. Interpret the [tex]\( z \)[/tex]-score:

A [tex]\( z \)[/tex]-score of 1 means that the value [tex]\( x = 7.5 \)[/tex] is one standard deviation ([tex]\(1 \sigma\)[/tex]) above or to the right of the mean ([tex]\(\mu = 5.5\)[/tex]).

Therefore, the correct interpretation is:
"This means that [tex]\( x = 7.5 \)[/tex] is one standard deviation ([tex]\(1 \sigma\)[/tex]) above or to the right of the mean, [tex]\( \mu = 5.5 \)[/tex]."