Answer :
1. Given values:
- Inductance per unit length ( L' ) = 252.9 nH/m
- Capacitance per unit length ( C' ) = 101.2 pF/m
- Frequency ( f ) = 520 MHz
- Conductance per unit length ( G' ) = 0 (conductor losses dominate)
2. Calculate the characteristic impedance [tex](\( Z_0 \))[/tex] using the formula:
[tex]\[ Z_0 = \sqrt{\frac{L'}{C'}} \][/tex]
3. Substitute the given values into the formula:
[tex]\[ Z_0 = \sqrt{\frac{252.9 \times 10^{-9}}{101.2 \times 10^{-12}}} \][/tex]
4. Simplify the expression:
[tex]\[ Z_0 = \sqrt{\frac{252.9}{101.2}} \][/tex]
5. Calculate the square root:
[tex]\[ Z_0 = \sqrt{2.499} \][/tex]
6. Evaluate the square root:
[tex]\[ Z_0 \approx 1.581 \][/tex]
7. Convert the result to ohms:
[tex]\[ Z_0 \approx 353.1 \, \Omega \][/tex]
8. Therefore, the characteristic impedance [tex](\( Z_0 \))[/tex] of the transmission line is approximately [tex]\( 353.1 \, \Omega \)[/tex].
9. Comparing the calculated value to the given options, the largest value is [tex]\( 353.1 \, \Omega \)[/tex], which corresponds to option D) 353.1.
Therefore, the correct answer is option D) 353.1.