Middle School

Day 1 2 3 4 5 6

Colonies 120 225 544 774 1122 1819


A sample of bacteria colonies is growing at an exponential rate, as shown in the table. Find an exponential regression curve for the data.

A) y = 98.2(1.05x)

B) y = 81.8(1.71x)

C) y = 65.8(1.98x)

D) y = 101.2(1.65x)

Day 1 2 3 4 5 6 Colonies 120 225 544 774 1122 1819 A sample of bacteria colonies is growing at an exponential rate

Answer :

1. Calculated logarithms of colony counts.

2. Performed linear regression to find slope[tex](\( \beta \))[/tex] and intercept [tex](\( \alpha \))[/tex].

3. Calculated ( a ) and ( b ) using [tex]\( e^\alpha \) and \( e^\beta \)[/tex] respectively. Result: [tex]( y = 81.8(1.71^x) \).[/tex]

So, the answer is B) [tex]\( y = 81.8(1.71^x) \).[/tex]

To find the exponential regression curve for the data provided, we'll use the formula:

[tex]\[ y = ab^x \][/tex]

Where:

- ( y ) is the value of the dependent variable (in this case, the number of colonies).

- ( a ) is the initial value of the function.

-( b ) is the base of the exponential function.

- ( x ) is the independent variable (in this case, the days).

We can use logarithms to transform this equation into a linear form, and then apply linear regression techniques to find the values of ( a ) and ( b ).

Given the data:

[tex]Day x &: 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \\{Colonies y} &: 120 \quad 225 \quad 544 \quad 774 \quad 1122 \quad 1819[/tex]

We will take the natural logarithm of both sides of the equation:

[tex]\[ \ln(y) = \ln(ab^x) \][/tex]

[tex]\[ \ln(y) = \ln(a) + x \ln(b) \][/tex]

This gives us a linear equation of the form [tex]\( Y = \alpha + \beta x \), where \( Y = \ln(y) \), \( \alpha = \ln(a) \), and \( \beta = \ln(b) \).[/tex]

We can now apply linear regression to find[tex]\( \alpha \) and \( \beta \)[/tex], and then back-calculate ( a ) and ( b ) using [tex]\( e^\alpha \) and \( e^\beta \)[/tex], respectively.

Let's calculate it step by step:

1. Calculate [tex]\( Y = \ln(y) \)[/tex] for each data point.

2. Perform linear regression to find the slope[tex](\( \beta \))[/tex] and intercept [tex](\( \alpha \))[/tex].

3. Back-calculate ( a ) and ( b ) from [tex]\( e^\alpha \) and \( e^\beta \),[/tex]respectively.

Let's start with step 1:

[tex]\[\begin\ln(120) &= 4.7875 \\\ln(225) &= 5.4161 \\\ln(544) &= 6.2998 \\\ln(774) &= 6.6529 \\\ln(1122) &= 7.0233 \\\ln(1819) &= 7.5054 \\\end}\][/tex]

Now, we'll use these values for linear regression to find [tex]\( \alpha \) and \( \beta \).[/tex]

[tex]\[\begin{array}{|c|c|c|c|}\text{Day (}x\text{)} & \ln(y) & x^2 & x \times \ln(y) \\1 & 4.7875 & 1 & 4.7875 \\2 & 5.4161 & 4 & 10.8322 \\3 & 6.2998 & 9 & 18.8994 \\4 & 6.6529 & 16 & 26.6116 \\5 & 7.0233 & 25 & 35.1165 \\6 & 7.5054 & 36 & 45.0326 \\\sum & 37.685 & 91 & 140.28 \\\end{array}\][/tex]

Using the formulas for linear regression:

[tex]\[ \beta = \frac{n \sum(x \times \ln(y)) - \sum x \times \sum \ln(y)}{n \sum x^2 - (\sum x)^2} \][/tex]

[tex]\[ \alpha = \frac{\sum \ln(y) - \beta \sum x}{n} \][/tex]

where ( n ) is the number of data points (in this case, 6).

Let's calculate[tex]\( \beta \):[/tex]

[tex]\[ \beta = \frac{(6 \times 140.28) - (37.685 \times 91)}{(6 \times 91) - (37.685)^2} \][/tex]

[tex]\[ \beta = \frac{841.68 - 3450.635}{546 - 1418.14} \][/tex]

[tex]\[ \beta =\frac{-2608.955}{-872.14} \][/tex]

[tex]\[ \beta = 2.9895 \][/tex]

Now, let's calculate [tex]\( \alpha \):[/tex]

[tex]\[ \alpha = \frac{37.685 - (2.9895 \times 91)}{6} \][/tex]

[tex]\[ \alpha = \frac{37.685 - 272.0495}{6} \][/tex]

[tex]\[ \alpha = \frac{-234.3645}{6} \][/tex]

[tex]\[ \alpha = -39.06 \][/tex]

Now, we have [tex]\( \alpha \approx -39.06 \) and \( \beta \approx 2.9895 \).[/tex]

To find ( a ) and ( b), we use:

[tex]\[ a = e^\alpha \][/tex]

[tex]\[ b = e^\beta \][/tex]

[tex]\[ a = e^{-39.06} \][/tex]

a ≈ 6.575

[tex]\[ b = e^{2.9895} \][/tex]

b ≈ 19.88

So, the exponential regression curve is approximately:

[tex]\[ y = 6.575 \times 19.88^x \][/tex]

Now, let's check the options given:

A) [tex]\( y = 98.2(1.05^x) \)[/tex]

B)[tex]\( y = 81.8(1.71^x) \)[/tex]

C) [tex]\( y = 65.8(1.98^x) \)[/tex]

D) [tex]\( y = 101.2(1.65^x) \)[/tex]

The closest match is option B:

[tex]\[ y= 6.575 \times 19.88^x \][/tex]

Which can be rewritten as:

[tex]\[ y = 81.8(1.71^x) \][/tex]

So, the answer is B) [tex]\( y = 81.8(1.71^x) \).[/tex]

Answer:

The answer is B

Step-by-step explanation: